

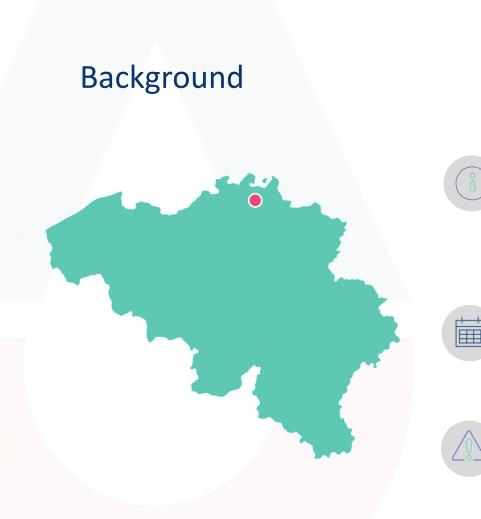
This project has received funding from the European Horizon2020 research and innovation programme under Grant Agreement No. 826312

In Situ Metal Precipitation:

A pilot test on In Situ Metal Precipitation (ISMP) at an industrial site in Flanders

AquaConSoil2023

Dirk Paulus, TAUW Belgium


Photon Water
Photon Remediation

CARUS®

Czech University of Life Sciences Prague

WUA

Industrial activities

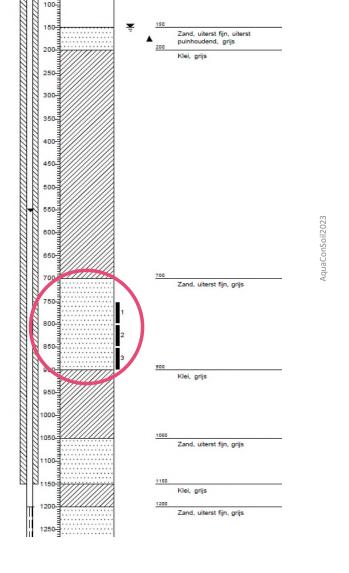
Smelting and refining > 350,000 tons of raw materials / year

Smelting complex metallic and oxidic secondary raw materials to feed their furnaces

Industrial activities since 1908

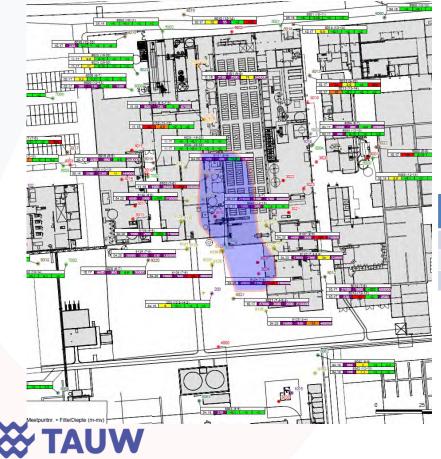
Calamities

- Destruction of sulfuric acid depot during World War I
- In 1933 a fire destroyed the copper sulfation unit


Local (hydro)geology

Local geology:

- 0 2,0 m-bgl:
- 2 6,5 m-bgl: Clay
- 6,5 8,0 m-bgl:
- 8,0 10 m-bgl:
- > 10 m-bgl:

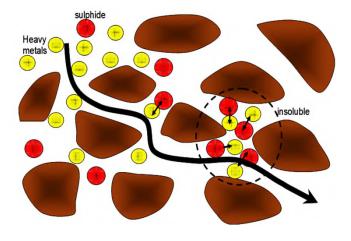

TAUW

- Antropogenic (sand + rubble, 1^{ste} perched aquifer)
- Sand (2nd aquifer)
- Clay
 - Sand (3th aquifer)
- Groundwater table: 4,0 4,5 m-bgl
- Hydraulic conductivity of the 2nd aquifer: 5,22 x 10⁻⁵ m/s
- Groundwater streams towards the south

Zuigwagen

Contamination

- Brine: Heavy metals (Cu, Ni, Zn) and As, ammonia, potassium and sulphate
- Acidity of groundwater: pH = 1 in core zone


	Sulphate (mg/l)	As (mg/l)	Cd (mg/l)	Cr (mg/l)	Cu (mg/l)	Hg (mg/l)	Pb (mg/l)	Ni (mg/l)	Zn (mg/l)
Average	11,241	28	5	1	1,086	0	0	879	104
Min	650	0.5	0.3	0	0	0	0	0	9.1
Max	40,000	210	26	6.7	6,000	0	0.5	5,800	330

Principle of In Situ Metal Precipitation (ISMP)

- Injection of a fermentable C source to boost the growth of anaerobic microorganisms including sulfate-reducing bacteria (SRB)
- SRB use sulfate as terminal electron acceptor
- Sulfate is reduced to sulfide
- Sulfide binds to metal(loid)s forming stable insoluble sulfide minerals
- org. substrate \rightarrow H⁺ + e⁻
- $SO_4^{2-} + 4H_2 \rightarrow 4H_2O + S^{2-}$
- $S^{2-} + Hg^{2+} \rightarrow HgS \downarrow$

💥 TAUW

Black precipitate (insoluble metal sulfides)

Remediation: Lab testing

WUAT

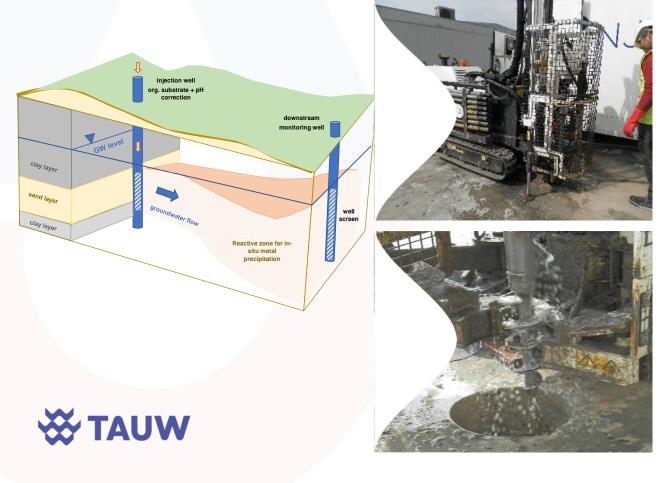
ISMP: lab test (chemical vs biological approach)

Adsorption of metals into iron(hydr)oxide

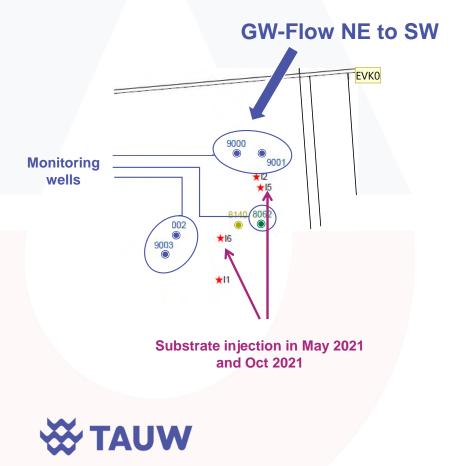
Precipitation of metals as metal sulphides

- Addition of ferrous sulphate
- pH correction

Test	рН	EC (μS/cm)	As (μg/l)	Ni (µg/l)	Zn (µg/l)
Initial	4,7	2570	1500	970	96000
Fe 0,2%	7,3	3390	<5,0	95	2300
Fe 1%	7,5	6380	<5,0	27	170

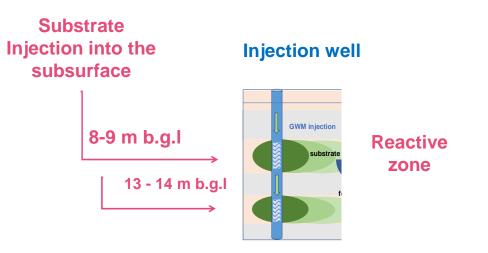

Addition of protamylasseAddition of sodium lactate

Field testing



 Core zone (close to brine zone): Chemical approach with direct injection of a Ca-polysulphide solution

2. Plume zone (further downstream of brine zone)


Biological approach with injection of a carbon source (emulsified vegetable oil EOSPro) with a potassium bicarbonate (K_2CO_3) solution to increase the pH

Fieldtest setup: plume zone

Monitoring wells

- 1. 8062A at a distance of 2 m of injection point I5
- **2. 9001** at a distance of 2 m of injection point I5
- **3. 9003** at a distance of 3,5 m of injection point I6

EVK0 Tabellen verbergen Ellen Van Kelst; 2023-09-08T11:48:31.500

Field test results

AquaConSoil2023

Field test results

Core zone (nearby brine zone):

Not very successful:

- Due to strong oxidative conditions sulphide rapidly was oxidised to sulphate
- No metal sulphide precipitation possible

💥 TAUW

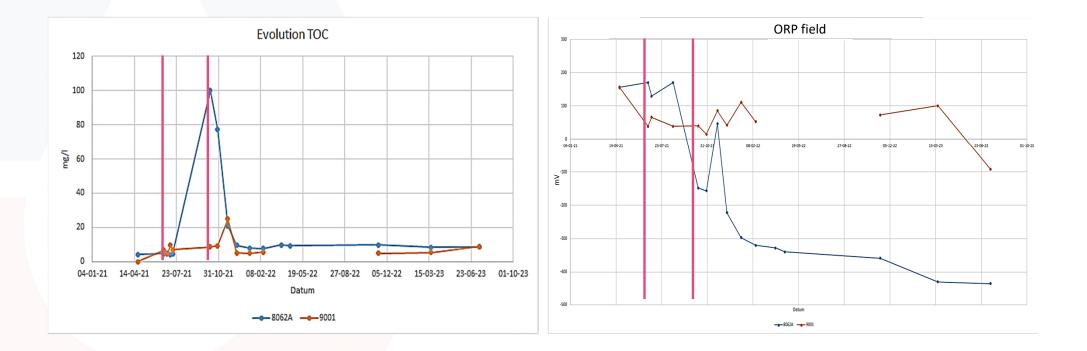
Plume zone (further downstream of brine zone):

• First injection in June 2021

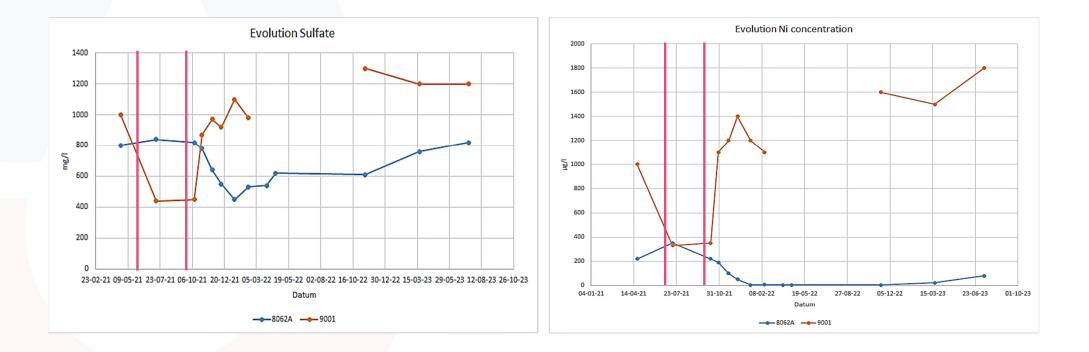
Not very successful because the injected carbon source concentration was too low

• Second injection in September 2021

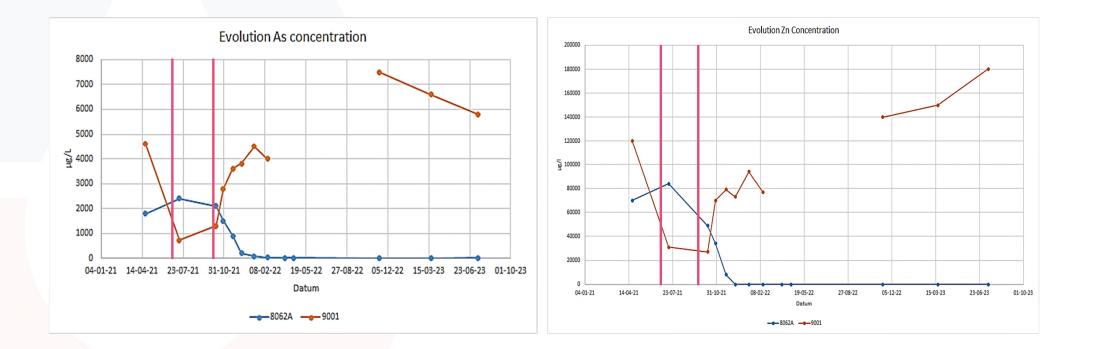
Doubled the doses of emulsified vegetable oil:


- 50 kg of emulsified oil in a 6,6% solution
- 1500 litres /m depth interval
- Better results

Potassium bicarbonate: Effect as a tracer and pH correction

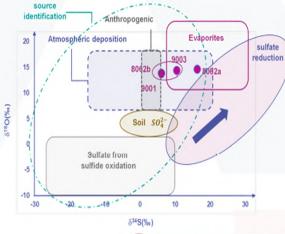


Geochemical result after the carbon source injection: Effect on TOC and ORP

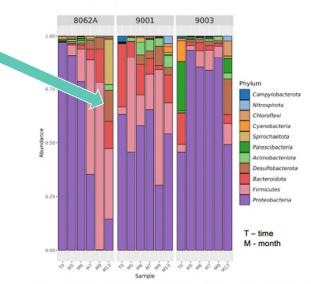

Field results

💥 TAUW

AquaConSoil2023


Pilot testing of ISMP

₩UAT 🕁



CSIA – Compound Specific Isotope Analysis for sulfate and Microbial diversity analysis

		9001	9003	8062A	8062b
T13 (May 2022)	³⁴ S/ ³² S	6.1 (0.2)	0.4 (0.1)	16.3 (0.3)	8.2
T13 (May 2022)	¹⁸ O/ ¹⁶ O	13.9 (0.6)	14,4 (0.5)	14.7 (0.6)	14.8
T0 (Apr 2021)	SO42. [mg/L]	1.000	660	800	1.000
T13 (May 2022)	SO42' [mg/L]	980	660	600	1.200
fraction SO42' re	duced	•	0.3 - 0.5	0.5 - 0.8	0.1 - 0.3

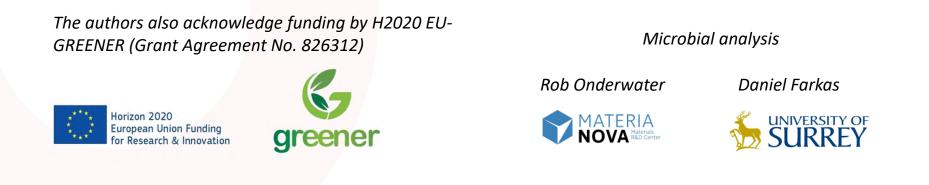
- For quantification of sulfate reduction an enrichment factor (ε_s) range of -14.8 and -6.2 ‰ was considered
- The S-signature of 9001 (+6.1 ‰) was used as source value
- A net change in sulfate concentration from 800 to 600 mg/L was observed for well 8062a
- A shift in δ34S of +10.2 ‰ was observed for well 8062a
- Sulfate reduction to sulfide by SRB in well 8260a ranged from 50 to 80 % according to stable isotope data

- Microbial community gradually changed in 8062a as treatment progressed
- Proteobacteria were largely replaced by fermentative Firmicutes, later also by Bacteroidota and Spirochaeta
- Desulfobacteroidota (SRB) also thrived in 8062a
- For wells 9001 and 9003 Proteobacteria dominated over time

₩UAT 🔆

Conclusions

Lessons learned and conclusions


- Technique of ISMP not applicable in core zones with extreme geochemical conditions
- ISMP is applicable in plume zone areas with "gentle" geochemical conditions
- High C-doses might be required to manipulate the local geochemistry
- Injection with multiple rods is strongly advised to overcome soil heterogeneities
- In case of favourable geochemical conditions a clear shift of bacterial populations towards SRB was measured
- Long term stability of heavy metal precipitates (at least 2 years)
- ISMP is a low-cost technique and more sustainable compared to a classic P&T
 - Cost savings are in the range of 80% on CAPEX and 50% on the yearly OPEX cost

Acknowledgements

- 1. Jaap Steketee, TAUW Netherlands, TAUW Test lab, Deventer Netherlands
- 2. Marian Langevoort, TAUW Netherlands, TAUW Test lab, Deventer Netherlands
- 3. A. Pérez-de-Mora, TAUW Gmbh, Dept. of Soil & Groundwater, Munich Germany
- 4. Herwig De Wilde, TAUW Belgium, Dept. of Soil & Groundwater, Lokeren Belgium
- 5. Dirk Paulus, TAUW Belgium, Dept. of Soil & Groundwater, Wijgmaal Belgium

This project has received funding from the European Horizon2020 research and innovation programme under Grant

Thank you for your attention

Dirk Paulus and Herwig De Wilde

Email: dirk.paulus@tauw.com and herwig.dewilde@tauw.com Phone number: +32 498 87 61 09 and + 32 498 87 61 12

Deltares

Czech University f Life Sciences