Emerging technologies for an emerging contaminant: **Practical Drivers for PFAS** Remediation

Jim Fenstermacher, PE Ramboll, Blue Bell PA, USA

Photon Water

CARUS®

Czech University

PFAS TECHNOLOGIES REPORTED BY MEDIA (2008-2022)

	Groundwater or Surface Water	Wastewater (municipal or industrial)	Leachates	AFFF Concentrate and Equipment	Soils	Bio- solids	Spent Media	Subtotals
Sorption and Ion Exchange	115	13	15				5	148
Chemical oxidation/ degradation	64	3			6			73
Membrane (RO/NF/electro membrane)	35	7	2					44
Microbial Bioremediation (anaerobic/aerobic)	1		1		27	9		38
Electrochemical oxidation (w/wo oxidant)	21	8	2		4			35
Photocatalytic oxidation/degradation	22	10	1					33
Concrete/Soil Fixation/solidification					30			30
Thermal destruction	7		1		5	4	3	20
Phytoremediation	4	1			15			20
Coagulation/Electro- coagulation	14	2		1	1			18
Reductive defluorination	13							13
Other, aqueous technologies	17	4	5	11				37
Other, solid media technologies					24	11	7	42
Subtotals:	313	48	27	12	112	24	15	551

STATE OF AQUEOUS TREATMENT TECHNOLOGIES

Modified from: Ross, et al., 2018. Remediation 28:101–126.

HOW ARE THESE TREATMENT TECHNOLOGIES APPLIED?

"CLASSICAL" CONTAMINANT BEHAVIOR...

Red, Yellow, Green = Decreasing Concentration

From: Integrated DNAPL Site Strategy, ITRC, 2011

THE "CLASSICAL" 14-COMPARTMENT MODEL...

Irreversible pathway

Integrated DNAPL Site Strategy, ITRC, 2011

DEPICTING MASS STORAGE WITH THE 14-C MODEL

Early/middle stage

	Source	e Area	Plume Area		
	Low-Perm	Transport	Transport	Low-Perm	
Vadose	2	2	2	1	
NAPL	4	3			
Aqueous	3	3	3	2	
Sorbed	3	3	3	2	

Late/middle stage

	Sourc	e Area	Plume Area		
	Low-Perm	Transport	Transport	Low-Perm	
Vadose	1	1	1	1	
NAPL	2	2			
Aqueous	3	2	2	3	
Sorbed	3	2	2	3	

Forces practitioner to think through where contaminant mass is stored, and to think through the subsurface as a <u>system</u> that's seeking an <u>ever-evolving</u> <u>equilibrium</u>.

R	elative ma within com	ss distribution partments				
	4 >90%					
	3 >9%					
	2	1-5%				
	1 ≤1%					
	o ~0%					
		•				

Storage is dependent on contaminant properties and age of release

Integrated DNAPL Site Strategy, ITRC, 2011

DEPICTING REMEDY EFFECTIVENESS WITH THE 14-C MODEL

	Source Area		Plume Area	
	Low-Perm	Transport	Transport	Low-Perm
Vadose	2	2	2	1
NAPL	4	3		
Aqueous	3	3	3	2
Sorbed	3	3	3	2

Pump and Treat at source area

	Sourc	e Area	Plume Area		
	Low-Perm	Transport	Transport	Low-Perm	
Vadose	0	0	0	0	
NAPL	1	2			
Aqueous	1	2	1	0	
Sorbed	0	1	1	0	

	Source	e Area	Plume Area		
	Low-Perm	Transport	Transport	Low-Perm	
Vadose	2	2	2	1	
NAPL	3	1			
Aqueous	2	1	2	2	
Sorbed	3	2	2	2	

ISCO with soil mixing at source area

	Source	e Area	Plume Area		
	Low-Perm	Transport	Transport	Low-Perm	
Vadose	0	0	0	0	
NAPL	4	4			
Aqueous	3	3	1	0	
Sorbed	3	3	0	0	

	Source	e Area	Plume Area		
	Low-Perm	Low-Perm Transport		Low-Perm	
Vadose	2	2	2	1	
NAPL	0	0			
Aqueous	0	0	2	2	
Sorbed	0	0	3	2	

PFAS DISTRIBUTION IN THE ENVIRONMENT

Receptors/Media Fate/Transformation Phenomena Transport/Exposure Phenomena

GENERALIZED COMPARTMENTS TO A CONCEPTUAL PFAS RELEASE

UNDERSTANDING VADOSE STORAGE AND TRANSPORT

Retardation increases with:

- Hydrophobicity of PFAS constituent
- Air-water interfacial area (soil type, clays)
- Salinity
- Organic carbon content (soil type)
- Mineral phases
- Time!
- Heterogeneity

Observation and models show storage is often on the order of decades

Dotted line of figure indicates transition from <u>air-water</u> to <u>solid-phase</u> adsorption dominated retardation due to decreasing moisture content

Retardation Factor [-]

Figure 3 of "Adsorption of PFAAs in the Vadose Zone and Implications for Long-Term Groundwater Contamination," Gnesda et al. *Env Sci & Technol*, 2022 56 (23), DOI: 10.1021/acs.est.2c03962

THE PFAS <u>18-COMPARTMENT</u> MODEL

Early/middle stage

PFAS 18-C	Source Area		Plume	Former	
Model	Low-Perm	Transport	Transport	Low-Perm	14-C
Vadose	1	2	2	1	Vadose
Vadose Sorbed	4	4			NAPL
Capillary Zone	3	4	1	0	
Aqueous	2	3	2	1	Aqueous
Sorbed	1	2	2	0	Sorbed

Late/middle stage

PFAS 18-C	Source Area		Plume	Former	
Model	Low-Perm	Transport	Transport	Low-Perm	14-C
Vadose	1	1	1	1	Vapor
Vadose Sorbed	3	3			NAPL
Capillary Zone	3	3	1	1	
Aqueous	2	2	1	2	Aqueous
Sorbed	2	1	1	2	Sorbed

... And different PFAS compounds will transport at different rates, and will equilibrate and store differently

REMEDIAL EFFICACY IN SOURCE AREAS

Early/middle stage

PFAS 18-C	Source Zone		
Model	Low Perm	Transmissive	
Vadose Vapor	1	2	
Vadose Sorbed	4	4	
Capillary Zone	3	4	
Aqueous	2	3	
Sorbed	1	2	

Aqueous

Sorbed

Late/middle stage

PFAS 18-C	Source Zone	
Model	Low Perm	Transmissive
Vadose Vapor	1	1
Vadose Sorbed	3	3
Capillary Zone	3	3
Aqueous	2	2
Sorbed	2	1

Plume behavior

Treatment

technology

Pump & Treat/Funnel and gate

	Low Perm	Transmissive
Vadose Vapor	0	0
Vadose Sorbed	0	0
Capillary	0	1
Aqueous	1	3
Sorbed	0	1

Thermal desorption and recovery

	Low Perm	Transmissive
Vadose Vapor	3	4
Vadose Sorbed	3	4
Capillary	3	4
Aqueous	3	4
Sorbed	3	4

Excavation/Soil washing

	Low Perm	Transmissive
Vadose Vapor	3	3
Vadose Sorbed	3	3
Capillary	3	3
Aqueous	3	3
Sorbed	3	3

Injectable activated carbons

	Low Perm	Transmissive
Vadose Vapor	0	0
Vadose Sorbed	0	0
Capillary	0	1
Aqueous	1	3
Sorbed	1	2

Soil mixing/In-situ s	tabilization/soli	idification
	Low Perm	Transmissive
Vadose Vapor	3	3
Vadose Sorbed	3	3
Capillary	3	3

3

3

3

3

Values for illustrative purposes only

REMEDIAL EFFICACY IN SOURCE AREAS

Early/middle stage

PFAS 18-C	Source Zone	
Model	Low Perm	Transmissive
Vadose Vapor	1	2
Vadose Sorbed	4	4
Capillary Zone	3	4
Aqueous	2	3
Sorbed	1	2

Late/middle stage

PFAS 18-C	Source Zone	
Model	Low Perm	Transmissive
Vadose Vapor	1	1
Vadose Sorbed	3	3
Capillary Zone	3	3
Aqueous	2	2
Sorbed	2	1

Plume behavior

Treatment technology

Pump & Treat/Funnel and gate

	Low Perm	Transmissive
Vadose Vapor	0	0
Vadose Sorbed	0	0
Capillary	0	
Aqueous		3
Sorbed	0	

Thermal desorption and recovery

	Low Perm	Transmissive
Vadose Vapor	3	4
Vadose Sorbed	3	4
Capillary	3	4
Aqueous	3	4
Sorbed	3	4

Excavation/Soil washing

	Low Perm	Transmissive
Vadose Vapor	3	3
Vadose Sorbed	3	3
Capillary	3	3
Aqueous	3	3
Sorbed	3	3

Injectable activated carbons

	Low Perm	Transmissive
Vadose Vapor	0	0
Vadose Sorbed	0	0
Capillary	0	1
Aqueous		3
Sorbed		2

Soil mixing /In city stabilization/solidification			
Son mixing/m-situ stabilization/sonumcation	Soil mixing/In-situ st	abilization/sol	idification

	Low Perm	Transmissive
Vadose Vapor	3	3
Vadose Sorbed	3	3
Capillary	3	3
Aqueous	3	3
Sorbed	3	3

Values for illustrative purposes only

REMEDIAL EFFICACY IN DOWNGRADIENT AREAS

carry/muule stage		
PFAS 18-C	Plume	
Model	Low Perm	Transmissive
Vadose Vapor	1	2
Vadose Sorbed		
Capillary Zone	0	1
Aqueous	1	2
Sorbed	0	2

Early/middle stage

Plume behavior

Treatment

technology

Pump & Treat/Funnel and gate

	Low Perm	Transmissive
Vadose Vapor	0	0
Vadose Sorbed	0	0
Capillary	0	1
Aqueous	1	3
Sorbed	0	1

Thermal desorption and recovery

	/	
	Low Perm	Transmissive
Vadose Vapor	3	4
Vadose Sorbed	3	4
Capillary	3	4
Aqueous	3	4
Sorbed	3	4

Excavation/Soil washing

Transmissive

1

1

1

1

Plume

Low Perm

1

1

2

2

	Low Perm	Transmissive
Vadose Vapor	3	3
Vadose Sorbed	3	3
Capillary	3	3
Aqueous	3	3
Sorbed	3	3

Injectable activated carbons

	Low Perm	Transmissive
Vadose Vapor	0	0
Vadose Sorbed	0	0
Capillary	0	1
Aqueous	1	3
Sorbed	1	2

Soil mixing/In-situ stabilization/solidification

Son mixing/m-situ stabilization/sonumcation		
	Low Perm	Transmissive
Vadose Vapor	3	3
Vadose Sorbed	3	3
Capillary	3	3
Aqueous	3	3
Sorbed	3	3

Values for illustrative purposes only

Late/middle stage

PFAS 18-C Model

Vadose Vapor

Aqueous

Sorbed

Vadose Sorbed Capillary Zone

REMEDIAL EFFICACY IN DOWNGRADIENT AREAS

Larry/Initude Stage		
PFAS 18-C	Plume	
Model	Low Perm	Transmissive
Vadose Vapor	1	2
Vadose Sorbed		
Capillary Zone	0	1
Aqueous	1	2
Sorbed	0	2

Early/middle stage

Plume behavior

Treatment

technology

Pump & Treat/Funnel and gate

	Low Perm	Transmissive
Vadose Vapor	0	0
Vadose Sorbed	0	0
Capillary	0	1
Aqueous	1	3
Sorbed	0	1

Thermal desorption and recovery

	/	
	Low Perm	Transmissive
Vadose Vapor	3	4
Vadose Sorbed	3	4
Capillary	3	4
Aqueous	3	4
Sorbed	3	4

Late/middle stage

PFAS 18-C	Plume	
Model	Low Perm	Transmissive
Vadose Vapor	1	1
Vadose Sorbed		
Capillary Zone	1	1
Aqueous	2	1
Sorbed	2	1

Excavation/Soil washing

	Low Perm	Transmissive
Vadose Vapor	3	3
Vadose Sorbed	3	3
Capillary	3	3
Aqueous	3	3
Sorbed	3	3

Injectable activated carbons

	Low Perm	Transmissive
Vadose Vapor	0	0
Vadose Sorbed	0	0
Capillary	0	1
Aqueous	1	3
Sorbed	1	2

Soil mixing/In-situ stabilization/solidification

Son mixing/in situ stabilization/sonameation			
	Low Perm	Transmissive	
Vadose Vapor	3	3	
Vadose Sorbed	3	3	
Capillary	3	3	
Aqueous	3	3	
Sorbed	3	3	

Values for illustrative purposes only

KEY TAKE-AWAYS

What is the current state of the remediation practice and where does this leave us?

- 1. PFAS transport is different than that of traditional contaminants less sensitivity to classic K_{ow}/f_{oc} relationships; adsorption, diffusion and storage at air/water interfaces
- 2. Understanding these differences is key to implementation of effective remedies
- 3. The 14-compartment model proved useful for classical contaminants; an 18-compartment model might be a more useful evaluation tool for PFAS sites
- 4. Vadose and capillary PFAS storage need to be considered in remedy evaluation and implementation
- 5. Without that consideration vadose storage can contribute mass to a groundwater system for decades
- 6. If part of the release history, impacts to vadose soils will serve as a source term, extending groundwater remediation at PFAS sites to decadal timeframes
- 7. A number of concentration methods are available at scale; destruction methods remain an active area of research

PFAS KEYWORD HITS IN LITERATURE, 2008-2022

Over 2,470 Literature Papers and Patents Included

Inner ring – reported media

<u>Water/groundwater</u> represented <u>63%</u> of the returns in the literature search <u>Soils</u> represented <u>14%</u>

<u>All other</u> media combined represented <u>23%</u> of returned results

Outer ring – reported technology

- Sorption
- Chemical oxidation
- Membrane separation
- Electrochemical

NUMBER OF U.S. PROJECTS CURRENTLY IN FUNDING

GAC, ion exchange, and membrane separation remain as the default technologies; <u>new separation methods</u> (i.e., foam fractionation) are rapidly appearing

- **Lab-scale** PFAS destruction technologies appear in the scientific literature as early as **2003**
- **Field-scale** remediation activities begin appearing in literature around **2017**
- Early work began with chemical and electrochemical destruction; however, hydrothermal, supercritical water oxidation, and plasma processes have more recently entered the market

Thank you for your attention

Jim Fenstermacher, PE

D (+1) 484-804-7203 M (+1) 267-664-4748 jim.fenstermacher@ramboll.com

Ramboll Blue Bell, PA, USA 19422 https://ramboll.com

Photon Water Photon Remediation

Czech University of Life Sciences Prague