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Challenges – Remediation of Oil-drilling cuttings 

Oil drilling cuttings (ODC)
• Main wastes generated during oil reservoir drilling.
• Fully water-saturated, high percentage of TOC, TPH
• Treatment is needed before their disposal on the ground

Exploratory Treatment Approach: 
OZONATION in a multiphase reactor

• To what extent can ozonation effectively remediate ODC?
• What are the optimal conditions for achieving efficient remediation?
• How can machine – deep learning techniques contribute to the 

modeling and optimization of a such system?

Main remediation technologies
• Solidification / Stabilization
• Thermal desorption, microwave heating, bioremediation

Parameter Units Minimum value Maximum value Average
Number of 
analyses

TOC % w/w (dry basis) 2.45 27.1 7.21 79
SiO2 % w/w db 5.4 37.42 22.68 37
AlO3 % w/w db 1.5 6.89 4.59 37
CaO % w/w db 3.87 19.8 10.63 37
Fe2O3 % w/w db 0.94 4.87 2.51 37
Na2O % w/w db 1.6 11.9 5.26 78

As+Ni+Co+Se+Te+
Cr+Pb+Sb+Sn+V

mg / kg db 311.42 3646.33 630.82 37

Cl mg / kg db 0.84 18 5.98 81
Ash % w/w 36.6 90.1 78.31 79

ODC Composition (Data from POLYECO S.A.
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Ozonation of ODC 
Experimental Setup
① Pre-treatment of oil drilling cuttings:

• Enhancement of hydrocarbon solubilization in liquid phase. 
• Seawater mixtures with surfactant (SDS) in various concentrations and ratio. 
• Ultrasonic bath (30 min in 30 ⁰C).

Dilution Ratio

Concentration of 𝑆𝑆𝐷𝐷𝑆𝑆
Initial Concentration of TOC 

Initial Concentration of TOC in solid phase 

Initial Concentration of TOC in liquid phase 

Initial Concentration of TPH

Measured Parameters (step 1):



Ozonation of ODC 
Experimental Setup

② Ozonation of the pretreated  
mud in a bubble column 

reactor 

Flow Rate of 𝑶𝑶𝟐𝟐

Concentration of 𝑶𝑶𝟑𝟑

Temperature 

pH

Oxidation Reduction Potential

TOC Removal Efficiency in Solid Phase

TOC Removal Efficiency in Liquid Phase

TPH concentration

Gas Hold up

Measured Parameters (step 2)



Reproducibility of Results
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Removal ~41% of organic carbon (TOC).
Transfer of organic pollutants to the aqueous phase.
Oxidation by dissolved ozone and generated species .

RH + O3 → I ↔ II 
I → R·+·OH + O ⎯⎯→ ROH + ketone + peroxides
I or II → ROH + O2

II → ROOOH → ROH + O2

Oxidation of alkanes
O3 + OH− → HO2

− + O2

O3 + HO2
− → ·OH + ·O2

− + O2
O3 + ·O2

− → ·O3
− + O2

·OH + O3 → HO2·+O2
·O3

− + H2O ↔ O2 + ·OH + OH−

Formation of radicals
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Initial Initial

Final Final

Ozone Concentration:50.1 g/m3

Ozone Concentration:4.92 g/m3  

TOC
50.1 g/m 3 → 39.37 %

4.92 g/m 3 → 32% 

Effect of O3 concentration on TPH and TOC removal efficiency

TPH
50.1 g/m 3 → 37.01 %
4.92 g/m 3 → 29.20 %         

 



Effect of ODC/water ratio and initial TOC concentration

Effect of dilution ratio sludge/water Effect of initial TOC concentration

Dilution ratio ODC/water=1/2 → Maximum percentage of 
pollutants transferred to the aqueous phase.      

Lower initial TOC  → Higher TOC removal
Process efficiency is not affected by initial TOC value
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Effect of SDS concentration

The presence of SDS enhances the foaming and the 
percentage  of organics in aqueous phase, without 
increasing the TOC removal efficiency in solid phase
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Effect of gas type

Oxygen   → Higher ozone concentration is achieved.
Air    → Production of NOx that act as oxidant
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Transient variation of pH and ORP
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pH reduction      → Formation of intermediate acidic species
ORP increment   → Increment of oxidizing species by dissolved 
ozone



Transient response of pressure drop and temperature

Differential pressure  → Hydrostatic Pressure
Initial high value         → Capillary Pressure in gas diffuser pores
Pressure fluctuations → Frequency of bubbles formation 

Initial high Temperature  → Sonication process
Transient cooling  → heat transfer to ambient

Heat  generation due to exothermic oxidation/ 
desorption/ dissolution reactions.
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Deep Neural Networks (DNNs) 

Input Variables                                     Output Variables

• Subclass of Artificial Neural Networks 
(ANNs) characterized by multiple hidden 
layers.

• A massively parallel distributed 
processor characterized by the ability:

i. to store experimental knowledge,
ii. to make it available for use.

• Implement nonlinear mappings from 
input data to output predictions.

Presenter Notes
Presentation Notes
But what are the DNNs? DNNs are ANN characterized by multiple hidden layers, enabling them to automatically learn hierarchical representations of data, leading to the extraction of complex patterns and information from raw input data. These computational algorithms, drawing inspiration from the human brain’s functioning, excel at storing empirical knowledge for application and make it available for future use. Comprising nodes organized into layers, ANNs take input variables like ozone concentration and flow rate, and predict output variables like remediation performance.



How do the inputs correspond to the 
outputs?

Input Layer        - Hidden Layer      - Output Layer

Model Parameters: 
• 𝑾𝑾, synaptic weights
• b, biases

Model Hyperparameters:
• 𝑓𝑓, activation function
• network depth
• width/hidden layer

Presenter Notes
Presentation Notes
The process behind this mapping can be elucidated as follows: Input values of input variables are multiplied by specific parameters, which are called synaptic weights. These weighted inputs are aggregated, bias is added, and the sum undergoes a nonlinear activation function. The outcome serves as the output of the node in the hidden layer and becomes the input for nodes in the subsequent layer. This iterative process continues until we attain the final model output. The model’s parameters are the synaptic weights, iteratively refined during training. While, other parameters known as hyperparameters are established via a process called hyperparameter tuning.



The Development of the DNN 
Overall Dataset 

Train Dataset Test

Train Set Validation

Train Set Validation Train Set

Train Set Validation Train Set

Validation Train Set

Τest

Split into Train and Test Set (70/30 %)

Implementing k-fold cross validation 

Choose the best model and retrain with the overall 
train dataset

Use the test dataset for unbiased estimation of the 
performance of the final model 

1st iteration

2nd iteration 

3nd iteration

4th iteration

Training Procedure : 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑾𝑾,𝒃𝒃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿𝑚𝑚

Hyperparameter Tuning: 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉.𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿𝑚𝑚

Presenter Notes
Presentation Notes
Specifically, the procedure we followed in developing a deep neural network can be summarized as follows: the entire dataset is initially divided into training ang testing tests, randomly after shuffling. The training set is further subjected to a process known as k-fold cross-validation. This involves iteratively splitting into training and validation subsets. Various neural networks, derived from different combination of hyperparameters, are trained on the training subsets and evaluated using metrics on the validation set. The networks demonstrating the highest accuracy on the validation set is selected and is retrained using the complete training dataset and subsequently tested on the test dataset. After confirming its successful performance and verifying that there is no need for regularization techniques or alternative models, the neural network is deemed ready for prediction. 



Details of the final DNN

• Multitask Deep Neural Network:

Inputs Tasks 

𝐿𝐿 𝑅𝑅𝐸𝐸𝐸𝐸
𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Δ𝑃𝑃
𝐶𝐶𝑇𝑇3 𝑝𝑝𝑝𝑝

𝐶𝐶𝐸𝐸𝑆𝑆𝐸𝐸 𝑇𝑇
𝑚𝑚𝑇𝑇𝑆𝑆𝑇𝑇 𝑂𝑂𝑅𝑅𝑃𝑃
𝐷𝐷𝑅𝑅
φG
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐿𝐿𝑇𝑇2

Presenter Notes
Presentation Notes
Our deep neural network operates as a multitask model, providing predictions for 5 distinct tasks. There are shared and task specific hidden layers and thousands of nodes. The 5 tasks are determined to be the toc removal efficiency in solid phase, the differential pressure in the coloumn, ph, temperature and oxidation reduction potential. The rest variables, time, initial concentration of TOC, concentration of ozone, concentration of sds, the mass of the mud, the dilution ration, the gas hold up the initial temperature and the flow rate of oxygen constitute the input variables.



Details of the final DNN

• Parameters of the Model: 1,988,425 
Determined by the Training Process 

(44121 data points)

• Multitask Loss Function:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = �
𝑖𝑖=1

5

𝑔𝑔𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 , 𝑔𝑔𝑖𝑖 ∈ (0,1)

Hyperparameter Value

No of shared layers 3

No of specific layers/task (4,3,2,2,3)

No of nodes/shared layer (1024,512,256)

No of nodes/specific layer (1024,624,124,1), (624,182,1), 
(162,1), (824,624,124,1)

Activation function ReLU, Linear

Learning rate 0.01

Optimizer Adam

Batch size 100

Epochs 250

gamma (0.25, 0.25, 0.1, 0.1, 0.3)

Presenter Notes
Presentation Notes
The development proves, as outlined earlier, was employed, A critical element of this process was the creation of a customized loss function. This function combines task-specific loss functions, each multiplied by a parameter gamma. This strategic weighting allows us to prioritize and fine-tune the model’s focus on the most ‘difficult” to learn tasks. Additionally, the table attached provides a deeper understanding of our model, highlighting its intricate architecture and key attributes.



Performance of the DNN 
• On the testing dataset (18910 data points)

Presenter Notes
Presentation Notes
The performance of the model during the testing procedure was excellent in each separate task. The loss function was almost zeroed up while the coefficient of determination exceeds the 98% in each case.



Performance of the DNN 
• On the testing dataset (18910 data points)



Interpretation of the DNN with XAI

𝐿𝐿
φG
𝑚𝑚𝑇𝑇𝑆𝑆𝑇𝑇

𝐶𝐶𝐸𝐸𝑆𝑆𝐸𝐸

𝐿𝐿𝑇𝑇2

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐷𝐷𝑅𝑅

𝐶𝐶𝑇𝑇3

Summary Plot of 𝑅𝑅𝐸𝐸𝐸𝐸

• The input variables are ranked in decreasing 
order of influence on the 𝑅𝑅𝐸𝐸𝐸𝐸.

• The TOC removal efficiency is favored when the:
 treatment time is longer, 
 gas hold-up notes the smaller values,
 mass of ODC corresponds to its smaller 

values,
 SDS concentration is the lowest,
 flow rate takes its smaller-medium values,
 initial temperature is the highest,
 initial TOC concentration is large. 

Presenter Notes
Presentation Notes
Specifically the summary plot of them rank the input variables along the vertical axis based on their impact to the output and reveal their effect on the output  based on their values (low -high). Therefore from the summary plot of the shap values for the toc removal efficiency, times emerges as the most influential factor, exhibiting a positive correlation with the efficiency. The gas hold up occupies the second spot, indicating a favorable relationship between low values and the remediation rate. Respectively, optimal TOC removal efficiency is facilitated when the mass of ODC and the SDS concentration have their lower values, the flow rate of oxygen mainly their lower,medium  values and the temperature is the highest. While the different concentrations of ozone seems to not affect in a significant way the output. So, as we can see the results regarding to the effect of the concentration sds, the flow rate and the concentration of ozone, from the parametric study are  confirmed from the neural network too.  



Conclusions
Ozonation tests on bubble flow column reactors demonstrated:

• The organic pollutants are transferred to the aqueous phase and are oxidized by 
dissolved ozone and generated oxidative species (e.g. OH.).

• Oxygen as inlet gas and low flow rate favor the ozonation process.
• Dilution ratio higher than 1-1 leads to higher removal efficiency of TOC & TPH.
• Process efficiency seems to be independent of high ozone concentrations.
• Presence of surfactant (SDS) enhances foaming and oil solubilization without improving 

ozonation process.

Simulation of ozonation by deep neural network demonstrated:
• Accuracy of the multitask DNN exceeds 98% in each distinct task.
• Confirmation of the effect of SDS, flow rate and 𝑂𝑂3 concentration by shap method and 

DNN.
• Longer treatment time, low values of gas hold up & ODC mass along with high initial TOC 

concentration and temperature favor the TOC removal efficiency in solid phase.
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