Remediation of oil-drilling cuttings with ozonation in bubble flow reactors, and process simulation with a machine-learning approach

K.F. Christodoulis^{1,2}, K. Kalari^{1,2}, N. Bali¹, M. Theodoropoulou¹, Ch. Tsakiroglou¹

¹ Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26504 Patras, Greece ² University of Patras, Department of Physics, 26504 Patras, Greece

Challenges – Remediation of Oil-drilling cuttings

Oil drilling cuttings (ODC)

- Main wastes generated during oil reservoir drilling.
- Fully water-saturated, high percentage of TOC, TPH
- Treatment is needed before their disposal on the ground

Main remediation technologies

- Solidification / Stabilization
- Thermal desorption, microwave heating, bioremediation

Exploratory Treatment Approach:

OZONATION in a multiphase reactor

- To what extent can ozonation effectively remediate ODC?
- What are the optimal conditions for achieving efficient remediation?
- How can machine deep learning techniques contribute to the modeling and optimization of a such system?

ODC Composition (Data from POLYECO S.A.

Parameter	Units	Minimum value	Maximum value	Average	Number of analyses
TOC	% w/w (dry basis)	2.45	27.1	7.21	79
SiO ₂	% w/w db	5.4	37.42	22.68	37
AlO ₃	% w/w db	1.5	6.89	4.59	37
CaO	% w/w db	3.87	19.8	10.63	37
Fe ₂ O ₃	% w/w db	0.94	4.87	2.51	37
Na ₂ O	% w/w db	1.6	11.9	5.26	78
As+Ni+Co+Se+Te+ Cr+Pb+Sb+Sn+V	mg / kg db	311.42	3646.33	630.82	37
Cl	mg / kg db	0.84	18	5.98	81
Ash	% w/w	36.6	90.1	78.31	79

Objectives

Ozonation Tests in a Bubble Flow Reactor

Experimental Parametric Analysis Development of a Deep Neural Network Use of Explainable Artificial Intelligence for Interpreting the predictions

Process Optimization

Ozonation of ODC

Experimental Setup

① Pre-treatment of oil drilling cuttings:

- Enhancement of hydrocarbon solubilization in liquid phase.
- Seawater mixtures with surfactant (SDS) in various concentrations and ratio.
- Ultrasonic bath (30 min in 30 °C).

Measured Parameters (step 1):

Dilution Ratio		
Concentration of SDS		
Initial Concentration of TOC		
Initial Concentration of TOC in solid phase		
Initial Concentration of TOC in liquid phase		
Initial Concentration of TPH		

Ozonation of ODC

Experimental Setup

② Ozonation of the pretreated mud in a bubble column reactor

Measured Parameters (step 2)

Flow Rate of $\boldsymbol{0}_2$

Concentration of $\boldsymbol{0}_3$

Temperature

pН

Oxidation Reduction Potential

TOC Removal Efficiency in Solid Phase

TOC Removal Efficiency in Liquid Phase

TPH concentration

Gas Hold up

Reproducibility of Results

Removal ~41% of organic carbon (TOC). Transfer of organic pollutants to the aqueous phase. Oxidation by dissolved ozone and generated species Formation of radicals $O_3 + OH^- \Rightarrow HO_2^- + O_2$ $O_3 + HO_2^- \Rightarrow OH + O_2^- + O_2$ $O_3 + O_2^- \Rightarrow O_3^- + O_2$ $OH + O_3 \Rightarrow HO_2 + O_2$ $O_3^- + H_2O \iff O_2 + OH + OH^-$

Oxidation of alkanes $RH + O_3 \rightarrow I \leftrightarrow II$ $I \rightarrow R + OH + O \longrightarrow ROH + ketone + peroxides$ $I \text{ or } II \rightarrow ROH + O_2$ $II \rightarrow ROOOH \rightarrow ROH + O_2$

Effect of O₃ concentration on TPH and TOC removal efficiency

Effect of ODC/water ratio and initial TOC concentration

Dilution ratio ODC/water= $1/2 \rightarrow$ Maximum percentage of pollutants transferred to the aqueous phase.

Lower initial TOC \rightarrow Higher TOC removal Process efficiency is not affected by initial TOC value

Effect of SDS concentration

The presence of SDS enhances the foaming and the percentage of organics in aqueous phase, without increasing the TOC removal efficiency in solid phase

Effect of gas type

Oxygen \rightarrow Higher ozone concentration is achieved. Air \rightarrow Production of NOx that act as oxidant

Transient variation of pH and ORP

На

Transient response of pressure drop and temperature

Differential pressure \rightarrow	Hydrostatic Pressure
Initial high value \rightarrow	Capillary Pressure in gas diffuser pores
Pressure fluctuations \rightarrow	Frequency of bubbles formation

Initial high Temperature \rightarrow Sonication process Transient cooling \rightarrow heat transfer to ambient

Heat generation due to exothermic oxidation/ desorption/ dissolution reactions.

Deep Neural Networks (DNNs)

- Subclass of Artificial Neural Networks (ANNs) characterized by multiple hidden layers.
- A massively parallel distributed processor characterized by the ability:
 - i. to store experimental knowledge,
 - ii. to make it available for use.
- Implement nonlinear mappings from input data to output predictions.

How do the inputs correspond to the outputs?

F

Model Parameters:

- *W*, synaptic weights
- **b**, biases

Model Hyperparameters:

- *f* , activation function
- network depth
- width/hidden layer

The Development of the DNN

Details of the final DNN

• Multitask Deep Neural Network:

Ę

Inputs	Tasks
t	R_{ES}
$C_{TOC,init}$	ΔP
C_{O_3}	pH
C_{SDS}	Т
m_{ODC}	ORP
DR	
ϕ_{G}	
T _{init}	
F_{O_2}	

Details of the final DNN

- Parameters of the Model: 1,988,425 Determined by the Training Process (44121 data points)
- Multitask Loss Function:

Ę

$$Loss = \sum_{i=1}^{5} g_i Loss_{Task_i}, g_i \in (0,1)$$

Hyperparameter	Value
No of shared layers	3
No of specific layers/task	(4,3,2,2,3)
No of nodes/shared layer	(1024,512,256)
No of nodes/specific layer	(1024,624,124,1), (624,182,1), (162,1), (824,624,124,1)
Activation function	ReLU, Linear
Learning rate	0.01
Optimizer	Adam
Batch size	100
Epochs	250
gamma	(0.25, 0.25, 0.1, 0.1, 0.3)

Performance of the DNN

• On the testing dataset (18910 data points)

Ē

Performance of the DNN

• On the testing dataset (18910 data points)

Loss Function_T4: 0.0000287 Coefficient of Determination_T4: 0.9991

Loss Function_T5: 0.00026 Coefficient of Determination_T5: 0.9956

Interpretation of the DNN with XAI

- The input variables are ranked in decreasing order of influence on the R_{ES} .
- The TOC removal efficiency is favored when the:
 - ✓ treatment time is longer,
 - \checkmark gas hold-up notes the smaller values,
 - ✓ mass of ODC corresponds to its smaller values,
 - $\checkmark\,$ SDS concentration is the lowest,
 - $\checkmark\,$ flow rate takes its smaller-medium values,
 - \checkmark initial temperature is the highest,
 - \checkmark initial TOC concentration is large.

Conclusions

Ozonation tests on bubble flow column reactors demonstrated:

- The organic pollutants are transferred to the aqueous phase and are oxidized by dissolved ozone and generated oxidative species (e.g. OH⁻).
- Oxygen as inlet gas and low flow rate favor the ozonation process.
- Dilution ratio higher than 1-1 leads to higher removal efficiency of TOC & TPH.
- Process efficiency seems to be independent of high ozone concentrations.
- Presence of surfactant (SDS) enhances foaming and oil solubilization without improving ozonation process.

Simulation of ozonation by deep neural network demonstrated:

- Accuracy of the multitask DNN exceeds 98% in each distinct task.
- Confirmation of the effect of SDS, flow rate and O_3 concentration by shap method and DNN.
- Longer treatment time, low values of gas hold up & ODC mass along with high initial TOC concentration and temperature favor the TOC removal efficiency in solid phase.

Acknowledgment

This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: 2 – 01447; **Project Title**: *Development of a mobile ozonation unit for the remediation of polluted soils and oil-drilling cuttings.*

EPANEK 2014-2020 OPERATIONAL PROGRAMME COMPETITIVENESS • ENTREPRENEURSHIP • INNOVATION

Co-financed by Greece and the European Union

The research has also received funding by H2020 programme under Grant Agreement 101037509: **Project Title:** <u>Strategies for health protection, pollution Control, and Elimination of Next generAtion of</u> <u>RefractIve Organic chemicals from the Soil, vadose zone and water</u>

Earlier published work

Kalari K., K. Christodoulis, N. Bali, M. Theodoropoulou, C. D. Tsakiroglou, "An artificial neural network toward simulating the treatment of wastes in multiphase reactors by ozonation", *Chem. Eng. J.*, 471 (2023) 144433. <u>https://doi.org/10.1016/j.cej.2023.144433</u>

Thank you for your attention!